Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38626355

RESUMEN

RATIONALE: Bronchiectasis is a pathological dilatation of the bronchi in the respiratory airways associated with environmental or genetic causes (e.g., cystic fibrosis, primary ciliary dyskinesia and primary immunodeficiency disorders), but most cases remain idiopathic. OBJECTIVES: To identify novel genetic defects in unsolved cases of bronchiectasis presenting with severe rhinosinusitis, nasal polyposis, and pulmonary Pseudomonas aeruginosa infection. METHODS: DNA was analyzed by next-generation or targeted Sanger sequencing. RNA was analyzed by quantitative PCR and single-cell RNA sequencing. Patient-derived, cells, cell cultures and secretions (mucus, saliva, seminal fluid) were analyzed by Western blotting and immunofluorescence microscopy, and mucociliary activity was measured. Blood serum was analyzed by electrochemiluminescence immunoassay. Protein structure and proteomic analyses were used to assess the impact of a disease-causing founder variant. MEASUREMENTS AND MAIN RESULTS: We identified bi-allelic pathogenic variants in WFDC2 in 11 individuals from 10 unrelated families originating from the United States, Europe, Asia, and Africa. Expression of WFDC2 was detected predominantly in secretory cells of control airway epithelium and also in submucosal glands. We demonstrate that WFDC2 is below the limit of detection in blood serum and hardly detectable in samples of saliva, seminal fluid, and airway surface liquid from WFDC2-deficient individuals. Computer simulations and deglycosylation assays indicate that the disease-causing founder variant p.Cys49Arg structurally hampers glycosylation and thus secretion of mature WFDC2. CONCLUSIONS: WFDC2 dysfunction defines a novel molecular etiology of bronchiectasis characterized by the deficiency of a secreted component of the airways. A commercially available blood test combined with genetic testing allows its diagnosis. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

2.
Cell Syst ; 15(4): 295-297, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38636454

RESUMEN

One snapshot of the peer review process for "A map of signaling responses in the human airway epithelium" (McCauley et al., 2024).1.


Asunto(s)
Análisis de Expresión Génica de una Sola Célula , Humanos
3.
Nat Med ; 29(6): 1563-1577, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37291214

RESUMEN

Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.


Asunto(s)
COVID-19 , Neoplasias Pulmonares , Fibrosis Pulmonar , Humanos , Pulmón , Neoplasias Pulmonares/genética , Macrófagos
4.
FEBS Lett ; 597(12): 1623-1637, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37102425

RESUMEN

The MIR449 genomic locus encompasses several regulators of multiciliated cell (MCC) formation (multiciliogenesis). The miR-449 homologs miR-34b/c represent additional regulators of multiciliogenesis that are transcribed from another locus. Here, we characterized the expression of BTG4, LAYN, and HOATZ, located in the MIR34B/C locus using single-cell RNA-seq and super-resolution microscopy from human, mouse, or pig multiciliogenesis models. BTG4, LAYN, and HOATZ transcripts were expressed in both precursors and mature MCCs. The Layilin/LAYN protein was absent from primary cilia, but it was expressed in apical membrane regions or throughout motile cilia. LAYN silencing altered apical actin cap formation and multiciliogenesis. HOATZ protein was detected in primary cilia or throughout motile cilia. Altogether, our data suggest that the MIR34B/C locus may gather potential actors of multiciliogenesis.


Asunto(s)
Cilios , MicroARNs , Humanos , Ratones , Animales , Porcinos , Cilios/genética , Cilios/metabolismo , Actinas/metabolismo , Genoma , Genómica , MicroARNs/genética , MicroARNs/metabolismo , Lectinas Tipo C/metabolismo
5.
Eur Respir J ; 60(2)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35086829

RESUMEN

The Human Cell Atlas (HCA) consortium aims to establish an atlas of all organs in the healthy human body at single-cell resolution to increase our understanding of basic biological processes that govern development, physiology and anatomy, and to accelerate diagnosis and treatment of disease. The Lung Biological Network of the HCA aims to generate the Human Lung Cell Atlas as a reference for the cellular repertoire, molecular cell states and phenotypes, and cell-cell interactions that characterise normal lung homeostasis in healthy lung tissue. Such a reference atlas of the healthy human lung will facilitate mapping the changes in the cellular landscape in disease. The discovAIR project is one of six pilot actions for the HCA funded by the European Commission in the context of the H2020 framework programme. discovAIR aims to establish the first draft of an integrated Human Lung Cell Atlas, combining single-cell transcriptional and epigenetic profiling with spatially resolving techniques on matched tissue samples, as well as including a number of chronic and infectious diseases of the lung. The integrated Human Lung Cell Atlas will be available as a resource for the wider respiratory community, including basic and translational scientists, clinical medicine, and the private sector, as well as for patients with lung disease and the interested lay public. We anticipate that the Human Lung Cell Atlas will be the founding stone for a more detailed understanding of the pathogenesis of lung diseases, guiding the design of novel diagnostics and preventive or curative interventions.


Asunto(s)
Enfermedades Pulmonares , Pulmón , Humanos , Proteómica , Tórax
6.
PLoS One ; 16(4): e0243333, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33852580

RESUMEN

The emergence and quick spread of SARS-CoV-2 has pointed at a low capacity response for testing large populations in many countries, in line of material, technical and staff limitations. The traditional RT-qPCR diagnostic test remains the reference method and is by far the most widely used test. These assays are limited to a few probe sets, require large sample PCR reaction volumes, along with an expensive and time-consuming RNA extraction step. Here we describe a quantitative nanofluidic assay that overcomes some of these shortcomings, based on the BiomarkTM instrument from Fluidigm. This system offers the possibility of performing 4608 qPCR end-points in a single run, equivalent to 192 clinical samples combined with 12 pairs of primers/probe sets in duplicate, thus allowing the monitoring of SARS-CoV-2 including the detection of specific SARS-CoV-2 variants, as well as the detection other pathogens and/or host cellular responses (virus receptors, response markers, microRNAs). The 10 nL-range volume of BiomarkTM reactions is compatible with sensitive and reproducible reactions that can be easily and cost-effectively adapted to various RT-qPCR configurations and sets of primers/probe. Finally, we also evaluated the use of inactivating lysis buffers composed of various detergents in the presence or absence of proteinase K to assess the compatibility of these buffers with a direct reverse transcription enzymatic step and we propose several protocols, bypassing the need for RNA purification. We advocate that the combined utilization of an optimized processing buffer and a high-throughput real-time PCR device would contribute to improve the turn-around-time to deliver the test results to patients and increase the SARS-CoV-2 testing capacities.


Asunto(s)
COVID-19/diagnóstico , Técnicas Analíticas Microfluídicas/métodos , SARS-CoV-2/aislamiento & purificación , Manejo de Especímenes/métodos , Adulto , COVID-19/virología , Prueba de COVID-19/métodos , Cartilla de ADN , Pruebas Diagnósticas de Rutina/métodos , Femenino , Humanos , Masculino , MicroARNs/genética , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/genética , Sensibilidad y Especificidad
7.
Semin Cell Dev Biol ; 110: 19-33, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33279404

RESUMEN

A finely regulated system of airway epithelial development governs the differentiation of motile ciliated cells of the human respiratory tract, conferring the body's mucociliary clearance defence system. Human cilia dysfunction can arise through genetic mutations and this is a cause of debilitating disease morbidities that confer a greatly reduced quality of life. The inherited human motile ciliopathy disorder, primary ciliary dyskinesia (PCD), can arise from mutations in genes affecting various aspects of motile cilia structure and function through deficient production, transport and assembly of cilia motility components or through defective multiciliogenesis. Our understanding about the development of the respiratory epithelium, motile cilia biology and the implications for human pathology has expanded greatly over the past 20 years since isolation of the first PCD gene, rising to now nearly 50 genes. Systems level insights about cilia motility in health and disease have been made possible through intensive molecular and omics (genomics, transcriptomics, proteomics) research, applied in ciliate organisms and in animal and human disease modelling. Here, we review ciliated airway development and the genetic stratification that underlies PCD, for which the underlying genotype can increasingly be connected to biological mechanism and disease prognostics. Progress in this field can facilitate clinical translation of research advances, with potential for great medical impact, e.g. through improvements in ciliopathy disease diagnosis, management, family counselling and by enhancing the potential for future genetically tailored approaches to disease therapeutics.


Asunto(s)
Dineínas Axonemales/genética , Cilios/metabolismo , Trastornos de la Motilidad Ciliar/genética , Proteínas del Ojo/genética , Mutación , Mucosa Respiratoria/metabolismo , Animales , Dineínas Axonemales/metabolismo , Cilios/patología , Cilios/ultraestructura , Trastornos de la Motilidad Ciliar/metabolismo , Trastornos de la Motilidad Ciliar/patología , Proteínas del Ojo/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Genotipo , Humanos , Patrón de Herencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas/genética , Proteínas/metabolismo , Calidad de Vida , Mucosa Respiratoria/patología , Mucosa Respiratoria/ultraestructura , Transducción de Señal
8.
PLoS Pathog ; 16(10): e1008660, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33075093

RESUMEN

Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naïve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication.


Asunto(s)
Neoplasias Mamarias Animales/metabolismo , Viroterapia Oncolítica/métodos , Factores de Transcripción/metabolismo , Transcriptoma , Virus Vaccinia/genética , Vaccinia/metabolismo , Replicación Viral , Animales , Biología Computacional , Perros , Femenino , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/terapia , Neoplasias Mamarias Animales/virología , Análisis de la Célula Individual , Factores de Transcripción/genética , Vaccinia/genética , Vaccinia/virología
9.
Am J Respir Crit Care Med ; 202(12): 1636-1645, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32726565

RESUMEN

Rationale: The respiratory tract constitutes an elaborate line of defense that is based on a unique cellular ecosystem.Objectives: We aimed to investigate cell population distributions and transcriptional changes along the airways by using single-cell RNA profiling.Methods: We have explored the cellular heterogeneity of the human airway epithelium in 10 healthy living volunteers by single-cell RNA profiling. A total of 77,969 cells were collected at 35 distinct locations, from the nose to the 12th division of the airway tree.Measurements and Main Results: The resulting atlas is composed of a high percentage of epithelial cells (89.1%) but also immune (6.2%) and stromal (4.7%) cells with distinct cellular proportions in different regions of the airways. It reveals differential gene expression between identical cell types (suprabasal, secretory, and multiciliated cells) from the nose (MUC4, PI3, SIX3) and tracheobronchial (SCGB1A1, TFF3) airways. By contrast, cell-type-specific gene expression is stable across all tracheobronchial samples. Our atlas improves the description of ionocytes, pulmonary neuroendocrine cells, and brush cells and identifies a related population of NREP-positive cells. We also report the association of KRT13 with dividing cells that are reminiscent of previously described mouse "hillock" cells and with squamous cells expressing SCEL and SPRR1A/B.Conclusions: Robust characterization of a single-cell cohort in healthy airways establishes a valuable resource for future investigations. The precise description of the continuum existing from the nasal epithelium to successive divisions of the airways and the stable gene expression profile of these regions better defines conditions under which relevant tracheobronchial proxies of human respiratory diseases can be developed.


Asunto(s)
Bronquios/citología , Bronquios/crecimiento & desarrollo , Diferenciación Celular/genética , Proliferación Celular/genética , Células Epiteliales/citología , Mucosa Nasal/citología , Mucosa Nasal/crecimiento & desarrollo , Células del Estroma/citología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Regulación de la Expresión Génica , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad
10.
Development ; 146(20)2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31558434

RESUMEN

The upper airway epithelium, which is mainly composed of multiciliated, goblet, club and basal cells, ensures proper mucociliary function and can regenerate in response to assaults. In chronic airway diseases, defective repair leads to tissue remodeling. Delineating key drivers of differentiation dynamics can help understand how normal or pathological regeneration occurs. Using single-cell transcriptomics and lineage inference, we have unraveled trajectories from basal to luminal cells, providing novel markers for specific populations. We report that: (1) a precursor subgroup of multiciliated cells, which we have entitled deuterosomal cells, is defined by specific markers, such as DEUP1, FOXN4, YPEL1, HES6 and CDC20B; (2) goblet cells can be precursors of multiciliated cells, thus explaining the presence of hybrid cells that co-express markers of goblet and multiciliated cells; and (3) a repertoire of molecules involved in the regeneration process, such as keratins or components of the Notch, Wnt or BMP/TGFß pathways, can be identified. Confirmation of our results on fresh human and pig airway samples, and on mouse tracheal cells, extend and confirm our conclusions regarding the molecular and cellular choreography at work during mucociliary epithelial differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Células Epiteliales/citología , Células Caliciformes/citología , Mucosa Respiratoria/citología , Animales , Diferenciación Celular/genética , Células Cultivadas , Células Epiteliales/metabolismo , Células Caliciformes/metabolismo , Humanos , Ratones , RNA-Seq , Mucosa Respiratoria/metabolismo , Porcinos , Tráquea/citología , Tráquea/metabolismo
11.
Nat Commun ; 9(1): 4668, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405130

RESUMEN

Multiciliated cells (MCCs) harbor dozens to hundreds of motile cilia, which generate hydrodynamic forces important in animal physiology. In vertebrates, MCC differentiation involves massive centriole production by poorly characterized structures called deuterosomes. Here, single-cell RNA sequencing reveals that human deuterosome stage MCCs are characterized by the expression of many cell cycle-related genes. We further investigated the uncharacterized vertebrate-specific cell division cycle 20B (CDC20B) gene, which hosts microRNA-449abc. We show that CDC20B protein associates to deuterosomes and is required for centriole release and subsequent cilia production in mouse and Xenopus MCCs. CDC20B interacts with PLK1, a kinase known to coordinate centriole disengagement with the protease Separase in mitotic cells. Strikingly, over-expression of Separase rescues centriole disengagement and cilia production in CDC20B-deficient MCCs. This work reveals the shaping of deuterosome-mediated centriole production in vertebrate MCCs, by adaptation of canonical and recently evolved cell cycle-related molecules.


Asunto(s)
Proteínas Cdc20/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Animales , Epéndimo/metabolismo , Epidermis/metabolismo , Femenino , Humanos , Ratones , Unión Proteica , Separasa/metabolismo , Análisis de la Célula Individual , Transcriptoma/genética , Vertebrados/metabolismo , Xenopus laevis/embriología , Xenopus laevis/metabolismo
12.
Nat Commun ; 8(1): 1189, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084942

RESUMEN

There is a growing body of evidence about the presence and the activity of the miRISC in the nucleus of mammalian cells. Here, we show by quantitative proteomic analysis that Ago2 interacts with the nucleoplasmic protein Sfpq in an RNA-dependent fashion. By a combination of HITS-CLIP and transcriptomic analyses, we demonstrate that Sfpq directly controls the miRNA targeting of a subset of binding sites by local binding. Sfpq modulates miRNA targeting in both nucleoplasm and cytoplasm, indicating a nucleoplasmic commitment of Sfpq-target mRNAs that globally influences miRNA modes of action. Mechanistically, Sfpq binds to a sizeable set of long 3'UTRs forming aggregates to optimize miRNA positioning/recruitment at selected binding sites, including let-7a binding to Lin28A 3'UTR. Our results extend the miRNA-mediated post-transcriptional gene silencing into the nucleoplasm and indicate that an Sfpq-dependent strategy for controlling miRNA activity takes place in cells, contributing to the complexity of miRNA-dependent gene expression control.


Asunto(s)
Silenciador del Gen , MicroARNs/genética , Factor de Empalme Asociado a PTB/genética , Procesamiento Postranscripcional del ARN , Regiones no Traducidas 3'/genética , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Ratones , Factor de Empalme Asociado a PTB/metabolismo , Unión Proteica , Células RAW 264.7 , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
13.
Elife ; 62017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28682239

RESUMEN

The amyloid precursor protein (APP) harbors physiological roles at synapses and is central to Alzheimer's disease (AD) pathogenesis. Evidence suggests that APP intracellular domain (AICD) could regulate synapse function, but the underlying molecular mechanisms remain unknown. We addressed AICD actions at synapses, per se, combining in vivo AICD expression, ex vivo AICD delivery or APP knock-down by in utero electroporation of shRNAs with whole-cell electrophysiology. We report a critical physiological role of AICD in controlling GluN2B-containing NMDA receptors (NMDARs) at immature excitatory synapses, via a transcription-dependent mechanism. We further show that AICD increase in mature neurons, as reported in AD, alters synaptic NMDAR composition to an immature-like GluN2B-rich profile. This disrupts synaptic signal integration, via over-activation of SK channels, and synapse plasticity, phenotypes rescued by GluN2B antagonism. We provide a new physiological role for AICD, which becomes pathological upon AICD increase in mature neurons. Thus, AICD could contribute to AD synaptic failure.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/patología , Neurogénesis/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
14.
FEBS Lett ; 591(5): 693-705, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28192603

RESUMEN

miR-34/449 microRNAs are conserved regulators of multiciliated cell differentiation. Here, we evidence and characterize expression of two isomiR variant sequences from the miR-34/449 family in human airway epithelial cells. These isomiRs differ from their canonical counterparts miR-34b and miR-449c by one supplemental uridine at their 5'-end, leading to a one-base shift in their seed region. Overexpression of canonical miR-34/449 or 5'-isomiR-34/449 induces distinct gene expression profiles and biological effects. However, some target transcripts and functional activities are shared by both canonical microRNAs and isomiRs. Indeed, both repress important targets that result in cell cycle blockage and Notch pathway inhibition. Our findings suggest that 5'-isomiR-34/449 may represent additional mechanisms by which miR-34/449 family finely controls several pathways to drive multiciliogenesis.


Asunto(s)
Células Epiteliales/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Células A549 , Secuencia de Bases , Ciclo Celular/genética , Células Epiteliales/citología , Perfilación de la Expresión Génica , Células HEK293 , Humanos , MicroARNs/metabolismo , Mucosa Nasal/citología , Mucosa Nasal/metabolismo , Cultivo Primario de Células , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transducción de Señal , Proteínas ras/genética , Proteínas ras/metabolismo , Inhibidor beta de Disociación del Nucleótido Guanina rho/genética , Inhibidor beta de Disociación del Nucleótido Guanina rho/metabolismo
15.
Nucleic Acids Res ; 45(9): e71, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28108660

RESUMEN

Experimental evidence indicates that about 60% of miRNA-binding activity does not follow the canonical rule about the seed matching between miRNA and target mRNAs, but rather a non-canonical miRNA targeting activity outside the seed or with a seed-like motifs. Here, we propose a new unbiased method to identify canonical and non-canonical miRNA-binding sites from peaks identified by Ago2 Cross-Linked ImmunoPrecipitation associated to high-throughput sequencing (CLIP-seq). Since the quality of peaks is of pivotal importance for the final output of the proposed method, we provide a comprehensive benchmarking of four peak detection programs, namely CIMS, PIPE-CLIP, Piranha and Pyicoclip, on four publicly available Ago2-HITS-CLIP datasets and one unpublished in-house Ago2-dataset in stem cells. We measured the sensitivity, the specificity and the position accuracy toward miRNA binding sites identification, and the agreement with TargetScan. Secondly, we developed a new pipeline, called miRBShunter, to identify canonical and non-canonical miRNA-binding sites based on de novo motif identification from Ago2 peaks and prediction of miRNA::RNA heteroduplexes. miRBShunter was tested and experimentally validated on the in-house Ago2-dataset and on an Ago2-PAR-CLIP dataset in human stem cells. Overall, we provide guidelines to choose a suitable peak detection program and a new method for miRNA-target identification.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/metabolismo , Secuencias de Aminoácidos , Proteínas Argonautas/química , Proteínas Argonautas/genética , Benchmarking , Sitios de Unión , Humanos , MicroARNs/química , Conformación de Ácido Nucleico , Sensibilidad y Especificidad , Programas Informáticos
16.
Nucleic Acids Res ; 45(7): e48, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27940562

RESUMEN

Single cell RNA sequencing approaches are instrumental in studies of cell-to-cell variability. 5΄ selective transcriptome profiling approaches allow simultaneous definition of the transcription start size and have advantages over 3΄ selective approaches which just provide internal sequences close to the 3΄ end. The only currently existing 5΄ selective approach requires costly and labor intensive fragmentation and cell barcoding after cDNA amplification. We developed an optimized 5΄ selective workflow where all the cell indexing is done prior to fragmentation. With our protocol, cell indexing can be performed in the Fluidigm C1 microfluidic device, resulting in a significant reduction of cost and labor. We also designed optimized unique molecular identifiers that show less sequence bias and vulnerability towards sequencing errors resulting in an improved accuracy of molecule counting. We provide comprehensive experimental workflows for Illumina and Ion Proton sequencers that allow single cell sequencing in a cost range comparable to qPCR assays.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Células Cultivadas , ADN Complementario , Perfilación de la Expresión Génica/economía , Células HEK293 , Humanos , Análisis de Secuencia de ARN/economía , Análisis de la Célula Individual
17.
BMC Med ; 13: 259, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26449324

RESUMEN

BACKGROUND: Data from next generation sequencing technologies uncovered the existence of many classes of small RNAs. Recent studies reported that small RNAs are released by cells and can be detected in the blood. In this report, we aimed to discover the occurrence of novel circulating small RNAs in coronary artery disease (CAD). METHODS: We used high-throughput sequencing of small RNAs from human and mouse apoptotic primary macrophages, and analyzed the data by empirical Bayes moderated t-statistics to assess differential expression and the Benjamini and Hochberg method to control the false discovery rate. Results were then confirmed by Northern blot and RT-qPCR in foam cells and in two animal models for atherosclerosis, namely ApoE(-/-) and Ldlr(-/-) mouse lines. Quantitative RT-PCR to detect identified small RNAs, the RNY-derived small RNAs, was performed using sera of 263 patients with CAD compared to 514 matched healthy controls; the Student t-test was applied to statistically assess differences. Associations of small RNAs with clinical characteristics and biological markers were tested using Spearman's rank correlations, while multivariate logistic regressions were performed to test the statistical association of small RNA levels with CAD. RESULTS: Here, we report that, in macrophages stimulated with pro-apoptotic or pro-atherogenic stimuli, the Ro-associated non-coding RNAs, called RNYs or Y-RNAs, are processed into small RNAs (~24-34 nt) referred to as small-RNYs (s-RNYs), including s-RNY1-5p processed from RNY1. A significant upregulation of s-RNY expression was found in aortic arches and blood plasma from ApoE(-/-) and Ldlr(-/-) mice and in serum from CAD patients (P <0.001). Biostatistical analysis revealed a positive association of s-RNY1-5p with hs-CRP and ApoB levels; however, no statistical interaction was found between either of these two markers and s-RNY1-5p in relation to the CAD status. Levels of s-RNY1-5p were also independent from statin and fibrate therapies. CONCLUSION: Our results position the s-RNY1-5p as a relevant novel independent diagnostic biomarker for atherosclerosis-related diseases. Measurement of circulating s-RNY expression would be a valuable companion diagnostic to monitor foam cell apoptosis during atherosclerosis pathogenesis and to evaluate patient's responsiveness to future therapeutic strategies aiming to attenuate apoptosis in foam cells in advanced atherosclerotic lesions.


Asunto(s)
Enfermedad de la Arteria Coronaria/sangre , ARN no Traducido/sangre , Anciano , Animales , Aorta Torácica/metabolismo , Aterosclerosis/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Línea Celular , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Análisis de Secuencia de ARN
18.
Nat Commun ; 6: 8386, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26381333

RESUMEN

Vertebrate multiciliated cells (MCCs) contribute to fluid propulsion in several biological processes. We previously showed that microRNAs of the miR-34/449 family trigger MCC differentiation by repressing cell cycle genes and the Notch pathway. Here, using human and Xenopus MCCs, we show that beyond this initial step, miR-34/449 later promote the assembly of an apical actin network, required for proper basal bodies anchoring. Identification of miR-34/449 targets related to small GTPase pathways led us to characterize R-Ras as a key regulator of this process. Protection of RRAS messenger RNA against miR-34/449 binding impairs actin cap formation and multiciliogenesis, despite a still active RhoA. We propose that miR-34/449 also promote relocalization of the actin binding protein Filamin-A, a known RRAS interactor, near basal bodies in MCCs. Our study illustrates the intricate role played by miR-34/449 in coordinating several steps of a complex differentiation programme by regulating distinct signalling pathways.


Asunto(s)
Actinas/metabolismo , Cuerpos Basales/metabolismo , Cilios/metabolismo , Células Endoteliales/metabolismo , MicroARNs/genética , Proteínas ras/metabolismo , África Occidental , Animales , Expresión Génica Ectópica , Embrión no Mamífero , Células Epiteliales/metabolismo , Filaminas/metabolismo , Humanos , Inmunohistoquímica , Hibridación in Situ , Microscopía Confocal , Proteínas de Unión al GTP Monoméricas/metabolismo , Mucosa Nasal/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Xenopus laevis
19.
Development ; 142(13): 2352-63, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26092849

RESUMEN

Despite the importance of mucociliary epithelia in animal physiology, the mechanisms controlling their establishment are poorly understood. Using the developing Xenopus epidermis and regenerating human upper airways, we reveal the importance of BMP signalling for the construction of vertebrate mucociliary epithelia. In Xenopus, attenuation of BMP activity is necessary for the specification of multiciliated cells (MCCs), ionocytes and small secretory cells (SSCs). Conversely, BMP activity is required for the proper differentiation of goblet cells. Our data suggest that the BMP and Notch pathways interact to control fate choices in the developing epidermis. Unexpectedly, BMP activity is also necessary for the insertion of MCCs, ionocytes and SSCs into the surface epithelium. In human, BMP inhibition also strongly stimulates the formation of MCCs in normal and pathological (cystic fibrosis) airway samples, whereas BMP overactivation has the opposite effect. This work identifies the BMP pathway as a key regulator of vertebrate mucociliary epithelium differentiation and morphogenesis.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Cilios/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Transducción de Señal , Vertebrados/embriología , Vertebrados/metabolismo , Animales , Tipificación del Cuerpo , Linaje de la Célula , Células Cultivadas , Células Epidérmicas , Epidermis/embriología , Células Epiteliales/metabolismo , Femenino , Humanos , Pulmón/citología , Regeneración , Xenopus , Proteínas de Xenopus/metabolismo
20.
Carcinogenesis ; 36(1): 32-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25344834

RESUMEN

Syndecan-1 (SDC1/CD138) is one of the main cell surface proteoglycans and is involved in crucial biological processes. Only a few studies have analyzed the role of SDC1 in mesenchymal tumor pathogenesis. In particular, its involvement in adipose tissue tumors has never been investigated. Dedifferentiated liposarcoma, one of the most frequent types of malignant adipose tumors, has a high potential of recurrence and metastastic evolution. Classical chemotherapy is inefficient in metastatic dedifferentiated liposarcoma and novel biological markers are needed for improving its treatment. In this study, we have analyzed the expression of SDC1 in well-differentiated/dedifferentiated liposarcomas and showed that SDC1 is highly overexpressed in dedifferentiated liposarcoma compared with normal adipose tissue and lipomas. Silencing of SDC1 in liposarcoma cells impaired cell viability and proliferation. Using the human multipotent adipose-derived stem cell model of human adipogenesis, we showed that SDC1 promotes proliferation of undifferentiated adipocyte progenitors and inhibits their adipogenic differentiation. Altogether, our results support the hypothesis that SDC1 might be involved in liposarcomagenesis. It might play a prominent role in the dedifferentiation process occurring when well-differentiated liposarcoma progress to dedifferentiated liposarcoma. Targeting SDC1 in these tumors might provide a novel therapeutic strategy.


Asunto(s)
Adipogénesis , Tejido Adiposo/patología , Diferenciación Celular , Transformación Celular Neoplásica/patología , Liposarcoma/patología , Sindecano-1/metabolismo , Tejido Adiposo/metabolismo , Western Blotting , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Citometría de Flujo , Humanos , Técnicas para Inmunoenzimas , Liposarcoma/genética , Liposarcoma/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/metabolismo , Células Madre/patología , Sindecano-1/antagonistas & inhibidores , Sindecano-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...